
A COUPLED COMPRESSIVE SENSING SCHEME FOR UNSOURCED MULTIPLE ACCESS

Vamsi K. Amalladinne, Avinash Vem, Dileep Kumar Soma,
Krishna R. Narayanan, Jean-Francois Chamberland

Department of Electrical and Computer Engineering, Texas A&M University

ABSTRACT

We present a novel divide-and-conquer compressive sensing
(CS) based approach for the unsourced random access prob-
lem [1]. Each user’s data is split into several sub-blocks and a
systematic linear block code is used to introduce redundancy
into this data. CS based encoder is then employed at each
sub-block before transmission and at the decoder, the outputs
are combined using a low-complexity tree based algorithm.
We demonstrate that the proposed scheme outperforms all
the existing practical coding schemes in literature and is only
≈ 4.3dB away from the Polyanskiy’s achievability limit [1].

Index Terms— unsourced multiple-access, uncoordinated
multiple-access, compressive sensing, tree encoding

1. INTRODUCTION

The unsourced multiple access problem, initially proposed by
Polyanskiy [1], is a novel and interesting twist to the unco-
ordinated multiple access problem [2, 3]. In this paradigm,
there are a total of Ktot users in the system out of which, at
any given time, a maximum of Ka users want to transmit a
B-bit message to the access point. The access point is inter-
ested in recovering only the set of messages being transmitted
without regard to the identity of the respective sources. With
regard to the system parameters, the total number of users
Ktot can be very large whereas Ka and B are fairly small,
typically a few hundreds.

Since the regime of interest for the number of message
bits and consequently the block length, is extremely small,
non-asymptotic information-theoretic benchmarks are required.
Polyanskiy [1] derived finite block length achievability bounds
for the unsourced MAC based on random Gaussian code book
and the optimal minimum mean-squared error decoder. In
[4], Ordentlich and Polyanskiy observed that several existing
multiple access strategies perform poorly, especially, for val-
ues of Ka larger than 100. They also proposed the first low
complexity coding scheme. In their scheme, the transmission
period is divided into sub-blocks (or slots) and it is assumed
that all the users are aware of the slot synchronization struc-
ture. The proposed coding scheme consists of an encoder that
transmits a codeword in a randomly chosen slot. This code-
word transmitted in a slot is from a concatenated code that is

designed for a T -user real addition Gaussian multiple access
channel (T -GMAC), typical values of T being 2 to 5. The
proposed scheme although performs significantly better than
the existing multiple access strategies, there is a significant
gap of ≈ 20 dB from the achievability limit [1]. In [5], we
proposed a low complexity coding scheme relying on the sim-
ilar slotted structure that: (i) consists of an improved, close-
to-optimal coding scheme for the T -GMAC and (ii) leverages
slots with more than T users transmitting instead of discard-
ing them and applies successive interference cancellation de-
coder across slots. The combination of the above features re-
sults in significantly improved performance compared to [4]
and is only ≈ 6 dB away from the above mentioned achiev-
ability limit.

Both of the above schemes take a channel coding view of
the problem wherein the Ka-user GMAC is reduced to multi-
ple smaller T -GMAC channel problems. In this paper, we
take a compressed sensing view of the problem. A naive
compressed sensing solution to the overall unsourced mul-
tiple access problem requires solving for a 2B-length, Ka-
sparse vector. This implies sensing matrices to the order of
2100 columns, which makes the problem intractable.

The key idea in this paper is to divide the information
blocks of the users into smaller sub-blocks such that each sub-
block is amenable to a compressed sensing (CS) framework.
Before encoding using the CS, each information sub-block
is encoded using a systematic linear block code. Given the
output from CS sparse recovery algorithm in each sub-block,
the original message is then recovered by piecing together the
outputs, leveraging the redundancy due to the block code in
each sub-block, via a low-complexity tree-based algorithm.
As far as we are aware the proposed scheme is the best known
practical coding scheme to date.

We use the following notation throughout the paper. R+,Z+

and N to denote the set of non-negative reals, set of non-
negative integers and the set of natural numbers respectively.
For any a, b ∈ Z+ with a ≤ b, we use [a : b] to denote the
set {c ∈ Z+ : a ≤ c ≤ b}. We write X ∼ B(n, p) if
a random variable X follows binomial distribution with pa-
rameters n ∈ N and p ∈ [0, 1]. For any set A, |A| denotes
the cardinality of A. For any x ∈ R, [x] denotes the nearest
integer of x.

2. SYSTEM MODEL

Let Stot represent the set of devices within the network and
Sa denote the subset of active devices seeking to transmit data
at a particular time instant, Sa ⊂ Stot. Let |Stot| = Ktot and
|Sa| = Ka. Each active device wishes to communicate B bits
of information to a base station through uncoordinated uplink
transmission. Let the number of channel uses dedicated to this
process be N . Let W = {~wk : k ∈ Sa} be the collection of
B bit message vectors associated with the active devices. We
assume that devices pick their message vectors independently
and uniformly at random from the set of binary sequences
{0, 1}B .

The base station facilitates a slotted structure for multiple
access on the uplink through coarse synchronization. As such,
the signal available at the receiver assumes the form

~y =
∑
k∈Sa

~xk +~z,

where ~xk is the N -dimensional vector transmitted by de-
vice k, and ~z represents additive white Gaussian noise. The
signal sent by every device is power constrained, i.e., ‖~xk‖22 ≤
NP for k ∈ Sa, a scenario akin to [1]. The energy-per-bit
is then given by Eb

N0
, NP

2B . The receiver produces an esti-

mate Ŵ (~y) for the list of transmitted binary vectors W with
|Ŵ (~y)| ≤ Ka. The per-user error probability of the system is
defined as

Pe =
1
Ka

∑
k∈Sa

Pr
(
~wk /∈ Ŵ (~y)

)
. (1)

We propose an encoding and decoding scheme that achieves
Pe ≤ ε, where ε is the target error probability with manage-
able computational complexity.

3. PROPOSED SCHEME

The key idea to limit complexity consists in dividing the data
stream generated by active devices into several sub-blocks.
These sub-blocks, with their very short packet fragments, are
then amenable to computationally efficient compressed sens-
ing (CS) algorithms. This process yields a list of likely frag-
ments for every sub-block. The original messages are then
recovered by piecing together compatible fragments. Techni-
cally, this latter step is accomplished by preemptively adding
redundancy to the codewords {~xk}, and then leveraging this
redundancy while combining sub-blocks via a low-complexity
tree-based algorithm.

The specifics of the coding scheme are detailed below. A
notional diagram of the proposed system appears in Fig. 1.

3.1. Encoder

The transmission strategy features two components: a sys-
tematic linear block code based on random parity checks,
which we refer to as the tree encoder, and a CS encoder. The

tree encoder adds the redundancy required to identify and
combine the sub-blocks corresponding to a parent message
from a pool of candidate fragments; whereas the CS encoder
transforms the sub-blocks output by the tree encoder into sig-
nals suitable for noisy compressive sensing.

3.1.1. Tree Encoder Based on Random Parity Checks

Every B-bit binary message vector ~w is encoded into M bits
using a systematic linear block code, which has random parity
check constraints. Algorithmically, a message vector is par-
titioned into n sub-blocks, with the ith sub-block consisting
of mi message bits,

∑n−1
i=0 mi = B. The tree encoder ap-

pends li parity bits to sub-block i, except for the first block
as we choose l0 = 0. All the coded sub-blocks have the
same length i.e., mi + li = J , M

n , ∀ i ∈ [0 : n − 1].
The parity check bits in each sub-block are constructed as
follows. Let (p(i)0 , p

(i)
1 , . . . , p

(i)
li−1) denote the parity bits in

sub-block i. These bits are generated satisfying parity check
constraints for all the message bits appearing until the respec-
tive sub-block. Towards this end, we concatenate the mes-
sage bits of all the sub-blocks k ∈ [0 : i] and index them
with the set [0 :

∑i
k=0 mk − 1]. We then choose li subsets

A(i)
j ⊆ [0 :

∑i
k=0 mk−1] ∀ j ∈ [0 : li−1] uniformly at ran-

dom without replacement. Now, p(i)j is chosen as the modulo-

2 sum of all the message bits indexed by the setA(i)
j . In effect,

p
(i)
j acts as a parity check constraint for some randomly cho-

sen message bits appearing till the sub-block i. In Sec. 4.1,
we describe an optimization framework for the choice of par-
ity length vector ~l = (l0 = 0, l1. . . . , ln−1).

3.1.2. CS Encoder

Let A = [~a1, . . . ,~a2J] ∈ {±
√
P}Ñ×2J , where Ñ , N

n ,
denote a compressed sensing matrix that is designed such that
it can recover any Ka-sparse binary vector in the presence of
noise with a low probability of error. The J bits in a sub-
block are encoded using a bijective function f : {0, 1}J →
{~aj , j ∈ [1 : 2J]}, which maps each sub-block to a column in
A. In other words, if ~̃wk = [~̃w

(k)
0

~̃w
(k)
1 . . . ~̃w

(k)
n−1] denotes the

binary sequence corresponding to the user k output by the tree
encoder, where ~̃w

(k)
i denotes the ith tree encoded sub-block.

Then, for each sub-block ~̃w (k)
i , the user transmits a column~aj

from the sensing matrix A.

3.2. Decoder

The decoding scheme consists of two components- CS de-
coder operating in each sub-block and a tree decoder operat-
ing across sub-blocks. The CS decoder implements a com-
pressed sensing algorithm to identify the list of sub-blocks
transmitted by the active users. The tree decoder tries to group
all the sub-blocks that correspond to a particular user together,

Tree Encoder CS Encoder
~w1 ~̃w1

Tree Encoder CS Encoder
~wi ~̃wi

Tree Encoder CS Encoder
~wKa

~̃wKa

...

∑
~z

CS decoder Tree Decoder

sub-block 0

sub-block 1

sub-block n-1

...

...

Depth 0

Depth 1

Depth n-1

→
→

~̂w 1, . . . , ~̂wKa

Fig. 1. Schematic of the proposed scheme.

by harnessing the redundancy employed during the encoding
process. We describe the two components of the proposed
decoder below.

3.2.1. CS Decoder

The signal received during the ith sub-block can be expressed
as ~yi = A~bi +~zi, where ~bi ∈ {0, 1}2

J

denotes a Ka-sparse
binary vector that indicates the list of ith sub-blocks trans-
mitted by all the active users. The objective of the CS de-
coder is to provide an estimate of the sparse vector ~bi from
the received signal ~yi. This problem is similar to the support
recovery problem in standard compressed sensing literature
because of the fact that the non-zero entries of ~bi are all 1’s.
We first employ the non-negative least squares (NNLS) al-
gorithm to get an estimate ~b(nnls)

i of the vector ~bi. However,
this does not ensure that the entries of the vector ~b(nnls)

i are

binary. The final binary estimate ~̂bi of ~bi is obtained by set-
ting the K largest entries of the vector ~b(nnls)

i to 1 and the
remaining 2J − K entries to 0. The number K is chosen as
K = Ka + Kδ , where Kδ is a small positive integer. Even
though the list output by the CS decoder is of size larger than
Ka, the quantity Kδ is carefully chosen such that the erro-
neously decoded sub-blocks are unlikely to satisfy all the par-
ity check constraints imposed due to the encoder structure.

3.2.2. Tree Decoder

The tree decoder attempts to find a valid transmitted string
corresponding to each user among the various lists output by
the CS decoder. Towards this end, the decoder constructs a
decoding tree for each user as follows. We fix any sub-block
from the list of all possible first sub-blocks supplied by the CS

decoder as the root node for the tree. When the first sub-block
is fixed, there are K possible choices for the second sub-block
and these are the nodes which appear in the first stage of the
tree. We now have K possible choices for the third sub-block
for each choice of second sub-block and hence K2 nodes in
the second stage. This process is continued till the (n − 1)th

stage which has Kn−1 nodes that correspond to the leaf nodes
of this tree. For each leaf node, the path connecting itself and
the root node is a possible choice for the transmitted string
totaling Kn−1 choices. If there exists a single valid path, the
decoder outputs the corresponding message vector else a fail-
ure.

The number of paths increases exponentially with the stages
of the tree and hence a naive search through all the leaf nodes
is infeasible. Hence, we attempt to prune the tree at each stage
by retaining fewer number of paths. At stage i ≥ 1, the de-
coder retains only those nodes that satisfy the li bit parity con-
straints on all the message bits appearing till that stage. This
process is continued till the (n − 1)th stage. The Complex-
ity of this decoding scheme depends on the number of nodes
surviving each stage, since parity checks have to be enforced
only on the children of surviving nodes in the next stage of the
tree decoding process. A comprehensive analysis of probabil-
ity of decoding failure and the decoding complexity is given
in the following section.

Remark 1 (Iterative extension). The successful outputs from
the tree decoder can be subtracted off from the respective re-
ceived signals in each sub-block. This can potentially improve
the estimate provided by the CS decoder compared to the pre-
vious iteration and this process can be repeated iteratively
until the gains become insignificant.

4. PERFORMANCE ANALYSIS

Let us assume that the list output by the CS decoder con-
tains the sub-block i transmitted by user k with a probability
1 − pcs, and with a probability pcs, this block is erroneously
replaced by a vector chosen uniformly at random from the
set {0, 1}J . Let Ek denote the event that user k’s transmit-
ted binary message is not present in the list output by the tree
decoder and Ck denote the event that all the sub-blocks corre-
sponding to this user are present in the lists output by the CS
decoder. Then, the quantity P (Ek) can be computed as,

P (Ek) = P (Ek|Ck)P (Ck) + P (Ek|Ck)P (Ck). (2)

If the CS decoder fails to decode atleast one of the sub-blocks
that correspond to a user, then the output of the tree decoder
would not contain the original message transmitted by that
user and so we have, P (Ek|Ck) = 1. The quantity P (Ck)
can be computed as P (Ck) = (1− pcs)

n. Ek|Ck is the event
that the tree decoder declares a failure because of more than
one path surviving the tree decoding process. Let us denote
this probability by ptree. When there are no iterations involved
in the decoding process, the quantity Pe is the same as P (Ek)
and they can now be computed using (2) and the above obser-
vations as Pe = 1 − (1 − ptree)(1 − pcs)

n. We now provide
a closed form expression for computing the quantity ptree and
also analyze the decoding complexity of this system. Further,
we provide an optimization framework for the choice of par-
ity lengths.

Let Li denote the random variable for the number of er-
roneous paths that survive stage i ∈ [1 : n − 1] of the tree
decoding process.

Lemma 2. Expected value of the quantity Li is given by,

E[Li] =

i∑
m=1

Ki−m(K − 1)

i∏
j=m

pj

 , i ∈ [1 : n− 1],

(3)

where pi =
1

2li
, qi = 1− pi ∀ i ∈ [1 : n− 1].

Proof. Let ~v denote a vector chosen uniformly at random
from the set of binary sequences {0, 1}m for some m ∈ N.
Probability that ~v satisfies l random linearly independent par-
ity checks is given by p = 1

2l
. At every stage i ∈ [1 : n−1] of

the decoding tree, Li is the number of paths that survive this
stage minus 1 (The true path survives all the checks determin-
istically). At stage 1, probability that any binary random vec-
tor of length 2J satisfies l1 randomly chosen parity checks is
given by p1 = 1

2l1
. Hence, probability that k out of the K−1

incorrect paths survive during stage 1 is given by,

P (L1 = k) =

(
K − 1

k

)
pk1q

K−1−k
1 .

Hence, L1 ∼ B(K − 1, p1). Also, for all i ≥ 2 given
Li−1, Li is the sum of Li−1 + 1 independent binomial ran-
dom variables, Li−1 of them with parameters (K, pi) and one
of them with parameters (K − 1, pi). Hence Li|Li−1 ∼
B((Li−1 + 1)K − 1, pi). The quantity E[Li] can now be
computed as,

E[Li] = E[E[Li|Li−1]]
= E[((Li−1 + 1)K − 1)pi] (4)
= piKE[Li−1] + pi(K − 1),

where (4) is due to the fact that E[Li|Li−1] is the mean of
the binomial random variable Li|Li−1. The above equation
can be solved recursively using the initial condition E[L1] =
(K − 1)p1 to get the following closed form expression:

E[Li] =

i∑
m=1

Ki−m(K − 1)

i∏
j=m

pj

 .

Lemma 3. The probability of error for the tree decoder ptree

is given by,

ptree = 1−GLn−1
(0), where

GLn−1(z) =

n−2∏
i=0

fK−1n−1−i(z),

fk(z) =

{
qk + pkf

K
k+1(z), 1 ≤ k ≤ n− 1

z
1
K , k = n,

(5)

where pi, qi are given in (3).

Proof. The quantity ptree, which denotes the probability that
more than one path survives the last stage of tree decoding
process can be quantified as P (Ln−1 ≥ 1). To compute this
probability, we first derive the probability generating function
(PGF) GLn−1

(z) of the random variable Ln−1. The quantity
GLn−1(z) is defined as,

GLn−1(z) = E[zLn−1]

=

Kn−1−1∑
k=0

P (Ln−1 = k)zk. (6)

Using the fact that Ln−1|Ln−2 ∼ B((Li−2+1)K−1, pn−1),
the above expression can be computed as,

GLn−1
(z) = E[zLn−1]

= E[E[zLn−1 |Ln−2]]

= E[(qn−1 + pn−1z)
(Ln−2+1)K−1

] (7)

= (qn−1 + pn−1z)
K−1

GLn−2
((qn−1 + pn−1z)

K
),

where (7) is because E[zLn−1 |Ln−2] is the PGF of the bino-
mial random variable Ln−1|Ln−2. The above equation can

be solved recursively with the initial condition GL1(z) =
(q1 + p1z)

K−1 to yield a closed form solution for the PGF
as,

GLn−1(z) =

n−2∏
i=0

fK−1n−1−i(z), (8)

where fk(z) =

{
qk + pkf

K
k+1(z), 1 ≤ k ≤ n− 1

z
1
K , k = n.

Using (6), the quantity ptree can be finally computed as,

ptree = P (Ln−1 ≥ 1) = 1− P (Ln−1 = 0)

= 1−GLn−1
(0),

where the quantity GLn−1
(0) can be computed by evaluating

(8) at z = 0.

We define the computational complexity C of this decoder
as the number of nodes on which parity checks need to be
performed.

Lemma 4. A Closed form expressions for computing the ex-
pected computational complexity E[C] is given by,

E[C] = K

n− 1 +

n−2∑
i=1

i∑
m=1

Ki−m(K − 1)

i∏
j=m

pj

 ,

(9)

where pi, qi are given in (3).

Proof. For each non-leaf node that survives the stage i, parity
checks need to be done for all it’s K children. Hence, com-
putational complexity and the expected computational com-
plexity can be expressed as,

C = K +K

[
n−2∑
i=1

Li + n− 2

]
,

E[C] = K +K

[
n−2∑
i=1

E[Li] + n− 2

]
. (10)

Substituting (3) into (10) yields the final succinct closed form
expression for the expected computational complexity given
in (9).

4.1. Choice of the Parity Length Vector

It can be seen from (5) and (9) that there is a trade-off between
probability of decoding failure and the average decoding com-
plexity. For a fixed code rate of the tree encoder (fixed number
of total parity bits), allocating more parity bits at the initial
stages of the tree would result in a lesser average complexity.
However, doing this would result in an increased probability
of decoding failure. Similarly, allocating more parity bits at
the later stages of the tree would result in lesser error rates,

but at the expense of higher computational costs. Hence, par-
ity lengths have to be chosen such that both complexity and
the error rate can be handled. Towards this end, We formu-
late a constrained optimization problem of minimizing the ex-
pected complexity subject to the probability of decoding fail-
ure being less than a carefully chosen threshold εtree. Since
the parity lengths are non-negative integers, such a problem
would be very difficult to solve and hence, we relax the prob-
lem to (l1, l2, . . . , ln−1) ∈ Rn−1+ . Also, we replace the con-
straint ptree ≤ εtree with E [Ln−1] ≤ εtree for the purpose of
mathematical tractability (By Markov’s inequality, the quan-
tity E [Ln−1] is an upper bound on ptree). Finally, the opti-
mization framework for the choice of parity lengths is given
by,

minimize
(p1,p2,...pn−1)

E[C]

subject to E [Ln−1] ≤ εtree,

n−1∑
i=1

log2

(
1

pi

)
= M −B,

pi ∈
[
1

2J
, 1

]
∀ i ∈ [1 : n− 1].

(11)

The above is a Geometric programming [6] opt. problem and
can be solved using any standard convex solver. We choose
the parity check lengths as l̂i =

[
log2

(
1
p̂i

)]
, ∀ i ∈ [1 : n−

1], where (p̂1, p̂2, . . . p̂n−1) is the solution to the optimization
problem.

50 100 150 200 250 300
0

5

10

15

20

25

XO

Number of active users Ka

R
eq

ui
re

d
E

b
/N

0
(d

B
)

Random Coding[1]
4-fold ALOHA[4]
SIC T=2[5]
SIC T=4[5]
Proposed Scheme, 0 iterations
Proposed Scheme, 1 iteration
OP-Exact[4]

Fig. 2. Minimum Eb/N0 required to acheive Pe ≤ 0.05 vs.
number of users for various schemes. Results for 2 and 3
iterations (see Remark. 1) are represented by ‘x’ and ‘o’ re-
spectively. Observe that the SNR gains diminish with each
iteration.

Ka 25 50 75 100 125 150 175 200 225 250 275 300
J 14 14 14 14 14 15 15 15 15 15 15 15
εtree 0.0025 0.0045 0.006 0.01 0.0125 0.0055 0.0065 0.007 0.008 0.01 0.0125 0.0175

Table 1. Various parameters used in simulations

5. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed scheme and provide com-
parisions with existing schemes in literature. We consider
a system with Ka ∈ [25 : 300] active users, each having
B = 75 bits of information to transmit. We divide these bits
into n = 11 sub-blocks and the quantity J , which denotes
the length of each sub-block is chosen depending on Ka and
is given in table (1). Similar to [5], we use sensing matrices
that are constructed based on BCH codes for the compressed
sensing problem. Specifically, we pick a subset C0 of code-
words of size |C0| = 2J from the (2047,23) BCH codebook C
with the following properties:

(i) ~c ∈ C0 =⇒ ~1 ⊕ ~c ∈ C \ C0, where ~1 ⊕ ~c denotes the
one’s complement of ~c.

(ii) ~c1,~c2 ∈ C0 =⇒ ~c1 + ~c2 ∈ C0.

(iii) ~0 ∈ C0, where ~0 denotes the all zero codeword.

The subset thus generated has good distance properties (dmax−
dmin is very small, where dmax and dmin denote the maxi-
mum and minimum distance between the codewords respec-
tively) and is more suitable for noisy recovery of binary sparse
signals than random Gaussian based constructions. We then
choose the sensing matrix as A = [~a0,~a1, · · · ,~a2J−1], of di-
mension 2047× 2J , where ~ai =

√
P (2~ci − 1),~ci ∈ C0 ∀ i ∈

[0 : 2J−1]. The total number of channel uses is then given by
N = 11×2047 = 22, 517. The target error probability of the
system is fixed at ε = 0.05. We set list size K for the NNLS
CS problem as K = Ka + 10. For each Ka ∈ [25 : 300], we
solve the optimization problem (11) using the CVX solver[7]
and the resulting solution dictates the choice of parity length
vector. Choice of the quantity εtree for each Ka is given in ta-
ble (1). The parameters B and N are chosen such that the rate
B
N = 75

22,517 is approximately the same as the rate resulting
due to the choice of parameters B = 100 and N = 30, 000
in [4, 5]. This allows us to make a fair comparison between
these schemes and our proposed scheme. We would like to
emphasize that the choice of B and N for our simulations is
motivated by the existance of good compressive sensing ma-
trices based on BCH codes. When these parameters are pro-
portionally scaled up, performance of the system can only im-
prove, as the finite block length effects are more pronounced
for lower values of B and N .

In Fig. 2, Eb/N0 required to achieve target error probabil-
ity of 0.05 is plotted as a function of Ka for various schemes.

The bottom most curve corresponds to Polyanski’s acheiv-
ability bound[1] on the performance of a finite block length
(FBL) code for this model. The curves labelled T = 2, T =
4 and 4-fold ALOHA which correspond to the performance
curves in [5] and [4] assume the existance of a code for the
T -user MAC channel which acheives the bound in [1]. The
curve labelled OP-Exact describes the performance of a prac-
tical scheme introduced in [4]. It can be seen from Fig. 2 that
our proposed scheme after one round of iteration outperforms
all the existing schemes for Ka ∈ [75 : 300]. Moreover,
similar to the FBL bound, the slope of the curve correspond-
ing to one iteration is very small for small values of Ka. We
also provide simulation results for 2 and 3 iterations (see Re-
mark. 1) of our proposed scheme with Ka = 200 represented
by ‘x’ and ‘o’ marks respectively. It can be seen that the SNR
gains diminish with each iteration.

6. REFERENCES

[1] Yury Polyanskiy, “A perspective on massive random-
access,” in Proc. Int. Symp. on Information Theory, 2017,
pp. 2523–2527.

[2] Enrico Paolini, Cedomir Stefanovic, Gianluigi Liva, and
Petar Popovski, “Coded random access: applying codes
on graphs to design random access protocols,” IEEE
Communications Magazine, vol. 53, no. 6, pp. 144–150,
2015.

[3] Xu Chen, Tsung-Yi Chen, and Dongning Guo, “Capacity
of gaussian many-access channels,” IEEE Transactions
on Information Theory, vol. 63, no. 6, pp. 3516–3539,
2017.

[4] Or Ordentlich and Yury Polyanskiy, “Low complexity
schemes for the random access Gaussian channel,” in
Proc. Int. Symp. on Information Theory, 2017, pp. 2528–
2532.

[5] Avinash Vem, Krishna. R Narayanan, Jun Cheng, and
Jean-Francois. Chamberland, “A user-independent
serial interference cancellation based coding scheme
for the unsourced random access Gaussian chan-
nel,” in https://avinashvem.github.io/
unsourcedma.pdf.

[6] Stephen Boyd and Lieven Vandenberghe, Convex opti-
mization, Cambridge university press, 2004.

https://avinashvem.github.io/unsourcedma.pdf
https://avinashvem.github.io/unsourcedma.pdf

[7] Michael Grant, Stephen Boyd, and Yinyu Ye, “CVX:
Matlab software for disciplined convex programming,”
2008.

	 Introduction
	 SYSTEM MODEL
	 PROPOSED SCHEME
	 Encoder
	 Tree Encoder Based on Random Parity Checks
	 CS Encoder

	 Decoder
	 CS Decoder
	 Tree Decoder

	 Performance Analysis
	 Choice of the Parity Length Vector

	 Simulation Results
	 References

