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Abstract

We propose a novel coding scheme for the unsourced multiple access channel model introduced by Polyan-
skiy [1]. This new paradigm is composed of four main ingredients: (i) the transmission period is partitioned into
sub-blocks, thereby instituting a slotted framework; (ii) The message (data) is split into two parts and one part
chooses an interleaver for a low density parity check (LDPC) type code. This part of the message is encoded using
spreading sequences or codewords that are designed to be decoded by a compressed sensing type decoder; (iii) The
other part of the message is encoded using a low density parity check (LDPC) type code and decoded using a joint
message passing decoding algorithm designed for the T -user binary input real adder channel; (iv) users repeat their
codeword in multiple sub-blocks, with the transmission pattern being a deterministic function of message content
and independent of the identity of the user. When this coding scheme is combined with successive interference
cancellation, the ensuing communication infrastructure can offer significant performance improvements compared
to the recently proposed coding scheme in [2] and results in the best performing coding scheme to date.

Index Terms

T -user adder channel, Slotted ALOHA, Interference Cancellation

I. INTRODUCTION

In [1], Polyanskiy introduced an interesting and timely multiple access problem; throughout, we refer
to this new formulation as the unsourced multiple access channel model (MAC). In this setting, a very
large number, Ktot, of users in a wireless network operate in an uncoordinated fashion. Out of the Ktot

users, a subset of Ka users are active at any time; and each of them wishes to communicate a B-bit
message to a central base station. The base station is interested only in recovering the list of messages
without regard to the identity of the user who transmitted a particular message. In addition to this, the
interest is typically in the case when B is small.

The unsourced, uncoordinated nature of the problem and the small block lengths represent a substantial
departure from the traditional multiple access channel and, consequently, has important implications both
on the fundamental limits as well as the design of pragmatic low-complexity coding schemes. Due to
small block lengths, information rates do not provide reasonable benchmarks and finite block length
bounds are more meaningful. In [1], Polyanskiy provides bounds on the performance of finite-length
codes for this channel model. The design of coding schemes is also very challenging for this setting.
Almost all well-known low-complexity coding solutions for the traditional MAC channel such as code-
division multiple access, rate-splitting [3], and interleave-division multiple access [4], implicitly assume
some form of coordination between the users and that some parameters of the coding scheme such as
the spreading sequence, code rates, time sharing parameters, Tanner graph of the code, etc., are user
dependent. When the message length is small, establishing such coordination becomes inefficient; this
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renders well-known coding solutions tailored to the traditional MAC inadequate for the unsourced MAC.
Ordentlich and Polyanskiy describe the first low-complexity coding paradigm for the unsourced MAC [2].
In their scheme, a transmission period is partitioned into smaller sub-blocks and users randomly pick one
sub-block to transmit in. The encoding structure employed by each user is a concatenated code where
the inner code is designed to recover the modulo-p sum of codewords transmitted by users and the outer
code is designed to decode multiple users given the modulo-p sum of their codewords. Succinctly, the
inner code operates in the spirit of integer-forcing [5], whereas the outer code is an optimal code for the
T -user modulo-p multiple access channel [6].

While Ordentlich and Polyanskiy have contributed an important first step in finding practical schemes
for the unsourced MAC, there remains a substantial gap between the performance of their proposed
scheme and the capacity limit derived in [1]. Indeed, they point to this gap and discuss possibilities for
improving its performance. In [2, Section III.A], they discuss the possibility of improving their scheme
by decoding the T messages using the real sum from the channel output instead of first reducing the
output of the channel to modulo-p operations. However, in the unsourced MAC, each user is forced to
use the same codebook and they remark that “the task of designing low complexity capacity approaching
same-codebook schemes for the real binary adder seems quite challenging.” Another important limitation
that is not discussed in [2] is that their scheme does not admit iterative cancellation and, hence, successive
interference cancellation is not considered. Therefore, when more than T -users transmit in a slot, this slot
is not utilized in the decoding process. As a result, their scheme uses a large number of slots in order to
ensure that every user is received in a time slot that contains at most T -users, resulting in poor spectral
efficiency.

The main contribution of this paper is to propose, analyze and optimize a new coding architecture that
overcomes these drawbacks and substantially improves performance when compared to the state-of-the-art.
Key features of our scheme are summarized as follows.
• User Symmetry: Active users employ the same coding scheme, with transmitted signals determined

solely by the message to be transmitted and is independent of the identity of the user. To be precise,
no parameter of the encoding scheme such as the interleaver and spreading sequence are unique to
a transmitter.

• Binary-input, real-adder channel: The proposed coding scheme is tailored to the binary-input real-
adder channel. The information message is split into two parts. The first portion picks an interleaver
for an LDPC code, and the second part is encoded using this LDPC code. Bits associated with the
first portion are communicated using a compressed sensing scheme. The second part is decoded using
a message passing decoder that jointly recovers up to T messages within a slot.

• Successive interference cancellation: Active users repeat their codewords in several slots. The
repetition patterns are selected based on message bits. This scheme facilitates interference cancellation
within the slotted structure, and therefore renders obsolete the over-provisioning of slots to avoid
undue collisions with more than T users.

While [2] also incorporates the user symmetry aspect described above, our scheme differs from theirs in
the other features highlighted above.

II. SYSTEM MODEL AND NOTATION

Let Ktot and Ka denote the total number of users in the network and the number of active users,
respectively. Each user has B bits of information (or, one of M := 2B indices) to be encoded and
transmitted within a block of N uses of the channel. Let Wi ∈ [1 : M ] be a random variable that
represents the message index of the i-th user and let wi be a realization of the random variable Wi.
Throughout this paper [a : b] denotes the set of integers from a to b, both inclusive. We first assume that
Wi is uniformly distributed over the set [1 : M ] and that for any pair of users i and j, Wi and Wj are
independent of each other. Without loss of generality we assume that the set of indices of the active users
is [1 : Ka] and let W := {w1, w2, . . . , wKa} denote the set of transmitted messages.
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The observed signal vector at the receiver corresponding to the N channel uses can be written as

~y =
Ktot∑
i=1

~xi +~z, (1)

where ~xi is a signal of dimension N transmitted by the user i, and the additive noise is characterized by
~z ∼ N (0, IN). For convenience, we also introduce boolean indicators indexed by i, where si = 1 if user i
is active and si = 0 otherwise. We impose an average power constraint on the transmitted vectors when
averaged over all possible message indices, i.e., 1

M

∑
w ||~x(w)||2 ≤ NP . The receiver produces a list of

messages L(~y) = {ŵ1, ŵ2, . . . , ŵKa}. As in [2], the probability of error is defined as

Pe = max
|(s1,...,sKtot )|=Ka

1

Ka

Ktot∑
i=1

siPr (wi /∈ L(~y)) (2)

where | · | denotes the Hamming weight. The objective is to design low-complexity encoding and decoding
schemes such that Pe ≤ ε, where ε is a target error probability.

III. DESCRIPTION OF THE PROPOSED SCHEME

The overall schematic of the proposed scheme is shown in Fig. 1. In our proposed scheme, the N
channel uses which are available for communication are split into V sub-blocks (also referred to as slots
throughout the paper), each of length Ñ = N/V channel uses. The encoding operation at the i-th user
takes place in two steps.

Encoder C̃
Repeat
Lw1

times

Encoder C̃
Repeat
Lwi times

Encoder C̃
Repeat

LwKa times

Slots

Up to T-users
jointly decoded

in each slot
+

Serial Interference
Cancellation (SIC)

across slots.

w1
~̃xw1

wi ~̃xwi

wKa
~̃xwKa

Slot 1

Slot 2

Slot 3

Slot V

...

...

ŵ1, . . . , ŵKa

Fig. 1: Schematic of the proposed scheme

A. Transmission policy across sub-blocks - message based repetition
Each user uses an identical codebook C̃ of rate R̃ and length Ñ . The user encodes the message index wi

into a codeword ~̃cwi ∈ C̃ and modulates ~̃cwi into ~̃xwi . In the following discussion, we will refer to ~̃cwi as
the transmitted codeword and the reader should assume that the codeword is modulated appropriately and
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transmitted. Each user also chooses a repetition parameter `wi = g(wi) using a function g : [1 : M ]→ [1 :
V ] and repeats their codeword ~̃cwi , `wi times by choosing `wi sub blocks from [1 : V ] based on the message
wi and transmits during these sub blocks. It is important to note that `wi as well as the slots where the
codeword is repeated are deterministic functions of the message index and do not depend on the identity
of the user. As shown in Fig. 1, a Tanner graph G can be used to visualize the repetition of the codewords
where the left nodes correspond to users and the right nodes corresponds to sub-blocks. The degree of
the left nodes is determined by `wi and choosing wi uniformly at random induces a distribution on `wi
through the function g. Let the left degree distribution (d.d) from node perspective be L(x) =

∑lmax

i=1 Lix
i,

where Li denotes the fraction of user (left) nodes that are connected to i slot(right) nodes. Similarly let
the left d.d from edge perspective be denoted by λ(x) =

∑lmax

i=1 λix
i−1, where λi denotes the fraction of

edges in G that are connected to left nodes connected to i − 1 other edges. The two distributions L(x)
and λ(x) are related as L(x) = L′(x)

L′(1)
. We choose the mapping g such that a desired left d.d. L(x) (or

equivalently λ(x)) is obtained.
During the j-th sub-block, let Nj denote the set of users who transmit. During the n-th use of the

channel within the j-th sub-block, the i-th user transmits symbols of positive power if i ∈ Nj . Otherwise,
the i-th user remains silent. The received signal during the j-th sub-block is given by

~̃yj =
∑
i∈Nj

~̃xwi + ~̃zj. (3)

B. Transmission policy within each sub block - same codebook schemes for the T -user real output channel
There are two components in the proposed transmission scheme within each sub-block: a good sensing

matrix for a T -sparse robust compressed sensing (CS) problem and a good channel code for the T -user
binary-input real-adder channel that is decodable with low computational complexity. The B bits to be
transmitted are split into two groups of size Bp and Bc = B−Bp bits, respectively. For convenience, we
define Mp := 2Bp and Mc := 2Bc . The main idea is to use a linear code C to encode Bc bits, which we
refer to as channel coding message index/bits; and to use the remaining Bp bits, which we refer to as
preamble message index/bits, to pick a permutation of the codeword encoded through the channel coding
message bits. Typically, we want Bp � Bc.

The codebook C̃ is constructed as follows. We begin with a good linear block code such as a low
density parity check (LDPC) code or a spatially-coupled low density parity check (SCLDPC) code C of
rate R̃ = Bc

Ñ−J and length N ′ := Ñ − J . As an example, we will consider the case when C is chosen
uniformly at random from the (l, r,w,N′) SCLDPC ensemble[7]. Let the modulated codewords of C be
denoted by {~c1,~c2, . . . ,~cMc}, where ~cw = [cw(1), cw(2), . . . , cw(N ′)], cw(i) ∈ {±

√
P1} ∀i satisfying the

power constraint

||~cw||22 ≤ N ′P1 (4)

denotes the modulated SCLDPC codeword corresponding to message index w. For the second part of
the encoder let A ∈ {−

√
P2,+

√
P2}J×Mp denote a sensing matrix that can recover the sum of any T

columns of A with low error probability. Let f : [1 : Mp]→ [1 : N ′!] denote a hash function which maps
Bp preamble message bits into an integer τw = f(w) such that τw is uniformly distributed over possible
permutations of length N ′, [1 : N ′!]. Note that here the integer τw chooses the permutation πτw ∈ SN ′ of
the encoded codeword from C before transmission where SN ′ is the symmetric group.

Let ~̃cw be the codeword corresponding to message index w = (wp, wc), where the indices wp, wc

correspond to the preamble and coding message indices respectively. ~̃cw is obtained by first permuting
the codeword of the SCLDPC code ~cwc according to permutation πτwp

= [π1
τwp
, π2

τwp
, . . . , πN

′
τwp

] and then
inserting the wpth column from the compressed sensing matrix A at the beginning of the permuted
codeword i.e.,

~̃cw = [~awp , cwc(πτ1
wp

), cwc(πτ1
wp

), . . . , cwc(πτwp
)]. (5)
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w = (w1, w2)

πτw2
(~cw1 )

w1
Ch. Encoder

w2
A

Permute
~cw1

πτw2
(~cw1 )

~aTw2

~aw2

~̃cw

w2

πτw2
= f(w2)

Fig. 2: At any user, for a message bit sequence w = (wp, wc) the schematic shows the encoder and the
final transmitted codeword ~̃cw.

The overall encoding process is shown in the Fig. 2. The main idea here is that permuting the codeword
~cwc decorrelates the multiple access interference from users even though they use identical linear codes
and results in a performance that is similar to that obtained by using different codes for the different
users. This is similar to interleave-division multiple access scheme that was originally proposed in [4].
The overall code is non-linear because of the random permutations for different codewords and ~awp being
appended at the beginning; however, if ~awp is identified (and consequently also wp) and removed at the
receiver, then the permutations can be determined and decoding the users can be accomplished using a
belief propagation decoder that works on the joint graph of the two users.

C. Decoder
The overall decoder has two components - a decoder for the T -user Gaussian multiple access(GMAC)

channel and a successive interference canceler that works across sub-blocks. Let Rj = |Nj| denote the
number of codewords transmitted during the j-th sub-block. The decoder observes the received signal
during each sub-block and first estimates Rj,∀j ∈ [1 : V ]. A simple estimate can be obtained by
observing the energy of the received signal during each sub-block, but more sophisticated estimates
based on decoding can be obtained, if necessary.

1) Compressed Sensing Decoder: The first J received symbols in the jth sub-block can be written in
matrix vector form as

~yj[1 : J ] = A~b+ zj[1 : J ] (6)

where A ∈ RJ×Mp is the sensing matrix and ~b ∈ {0, 1}Mp is a T -sparse vector that indicates the set of
transmitted messages during the jth slot. Our proposed receiver to recover ~b from ~yj[1 : J ] exploits the
sparsity of ~b as well as the fact that the non-zero entries of ~b are positive integers (particularly, 1’s). The
latter aspect makes our proposed receiver different from many standard compressed sensing reconstruction
algorithms.

We first run a non-negative least squares (or non-negative `1-regularized LASSO) algorithm that gives us
an estimate ~̂b of ~b. But these algorithms do not guarantee an output signal either of the required sparsity
or with elements strictly from the set {0, 1} (as we know apriori from the problem). To address this,
we perform a hard thresholding operation on each element of ~̂b and form a list of non-negative indices
Nlist = {i : b̂i > ηTh}. The value of parameter ηTh is chosen such that the list size is larger than T . We
then implement a maximum likelihood decoder within the above list of indices to find the set of T indices
that best explain the received vector ~y i.e.,

N̂ = arg min
S⊆Nlist,|S|=T

||~y −
∑
i∈S

~ai||22. (7)

As one can observe as we decrease the value of the threshold ηTh the list size increases which increases
the complexity of the MMSE estimator in Eq. (7) whereas if we increase the value of the threshold the
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list size decreases and the performance worsens. Clearly for a given SNR the value of the threshold ηTh
needs to be optimized. The CS decoder outputs the set of message indices N̂ , where |N̂ | = T , to the
message passing decoder.

2) Message Passing for Gaussian MAC: We describe the decoding process for T = 2 which can
be generalized to larger values of T in a straight forward manner. Consider a sub-block j with only
two users transmitting and let us assume their message indices are w1 = (w1

p, w
1
c) and w2 = (w2

p, w
2
c)

respectively. Note that the estimates of preamble message indices {w1
p, w

2
p} are available at the message

passing decoder, output from the CS decoder. Assuming appropriate demodulation is performed before
the decoding step the received signal in terms of the SC-LDPC codewords can be given by:

~̃yj =[~aw1
p
, cw1

c
(πτ1

w1
p

), cw1
c
(πτ2

w1
p

), . . . , cw1
c
(πτN′

w1
p

)]+

[~aw2
p
, cw2

c
(πτ1

w2
p

), cw2
c
(πτ2

w2
p

), . . . , cw2
c
(πτN′

w2
p

)] + zj

...

...

+ +

ych

...

...

...

...

+ +

ych

...

...

...

...

+ +

ych

...

...

...

...

+ +

ych

...

...

...

...

+ +

ych

...

...

...

...

+ +

ych

...

...

...

...

+ +

ych

...

...
πSCLDPC

πSCLDPC

πp2

πq2

Fig. 3: Schematic showing the joint Tanner graph

Recall that N ′ = Ñ − J where Ñ is the number of channel uses in a sub-block. First we separate the
channel coding part of the received vector by considering only the last N ′ values of the Ñ sized received
vector i.e.,

~y′ =[~aw1
p
, cw1

c
(πτ1

w1
p

), cw1
c
(πτ2

w1
p

), . . . , cw1
c
(πτN′

w1
p

)]+

[~aw2
p
, cw2

c
(πτ1

w2
p

), cw2
c
(πτ2

w2
p

), . . . , cw2
c
(πτN′

w2
p

)] + zj

which is input to the joint belief propagation(BP) decoder. As we can observe, the code bits/symbols in
each codeword are permuted according to a random permutation (chosen according to the second part of
the message index) before being transmitted across the GMAC channel. Therefore in the joint BP decoder
we need to apply these permutations and their inverses on the messages whenever they are being sent
to and from the MAC nodes respectively. The schematic of the joint Tanner Graph of the two users is
shown in Fig. 3.

Given the received signal ~y′ the joint BP decoder proceeds iteratively in a similar manner to that
of a single user AWGN channel coding problem apart from an extra step of messages being sent to
and received from the MAC node in each iteration. Throughout this sub-section we use superscript to
distinguish between users 1 and 2.
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• u1
i,MAC, u

1
i,j: Messages passed from the bit node corresponding to ith code bit of user 1 to the

corresponding MAC node and SCLDPC check node j respectively.
• v1

j,i: Message passed from SCLDPC check node j of user 1 to the bit node i of user 1
• v1

MAC,i: Message passed from ith MAC node to the connected bit node of user 1.
The messages for user 2 are defined similarly. Refer to Fig. 4 for a graphical representation of the
messages.

i

+

ui,MAC =
3∑
j=1

vj,i

1

v1,i

2

v2,i 3

v3,i

+

i

u2
i,MAC

yi,ch

i

v1
MAC,i

i

+

vMAC,i

1

2

3

v1,i

v2,i

ui,3 = vMAC,i +
2∑
j=1

vj,i

Fig. 4: Message passing rules at individual nodes on the joint Tanner graph of two users. The message
passing rules at the check nodes of the SCLDPC code are identical to the single user channel coding case.

Bit Node:

u1
i,j = v1

MAC,i +
∑

j′ 6=j,j′∈N (i)

v1
j′,i

u1
i,MAC =

∑
j∈N (i)

v1
j,i

LDPC Check Node:

v1
j,i = 2 tanh−1

(∏
i′ 6=i

tanh

(
u1
i′,j

2

))

MAC Node:

v1
MAC,i = h(u2

i,MAC, yi,ch) (8)

v2
i,MAC = h(u1

i,MAC, yi,ch) where

h(l, y) = log
1 + ele2(y−1)/σ2

el + e−2(y+1)/σ2 .

The function h(l, y|σ2) can be seen as the log-likelihood of variable x2 when y = x1 + x2 + z, x1, x2 ∈
{−1,+1} when the log-likelihood ratio of variable x1 is known to be l and z ∼ N (0, σ2).

IV. CHOICE OF PARAMETERS AND ANALYSIS

In this section we will look at the parameters of the different components of the proposed and how
each of them affect the overall performance. As described in Sec. II let ε be the maximum per user
error probability i.e. we are interested in decoding on an average (1− ε) fraction of the Ka active users
successfully. Let us define the following error events before we analyze the per user error probability Pe.
At any fixed slot j the events E1j , E2j, E3j are defined as:
• E1j : Event that at least two users pick the same preamble message index
• E2j : Event that the CS decoder does not decode the preamble message index wi,2 correctly for at

least one user i.e., ∃ i ∈ Nj : wi,2 /∈ N̂j
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• E3j : Event that the MAC channel decoder fails to recover the remaining users, if less than or equal
to T , in the slot

• ESIC : Event that a random active user is not recovered by the symmetric interference cancellation
process

The per user error probability Pe = Pr(ESIC) can be upper bounded as following:

Pe = Pr(∩i,jEcij)Pr

(
ESIC|

⋂
i,j

Ecij

)
+ Pr

(⋃
i,j

Eij

)
Pr(ESIC| ∪i,j Eij)

≤ Pr

(
ESIC|

⋂
i,j

Ecij

)
+ Pr

(⋃
i,j

Eij

)

= Pr (ET -peeling) + Pr

(⋃
i,j

Eij

)
≤ Pr (ET -peeling) +

∑
j

(Pr(E1j) + Pr(E2j) + Pr(E3j))

= Pr (ET -peeling) + V (Pr(E1) + Pr(E2) + Pr(E3)) (9)

where we refer to the SIC process under the assumption that the preamble collision, CS decoder error
and the MAC channel decoder error do not occur in any of the slots as T -peeling or ideal SIC process. In
other words T -peeling is an iterative process in which at any slot if there are less than or equal to T -users
connected we assume those T -users are decoded and their contributions are subtracted off (peeled off from
the slot nodes) from the other slots in which these users have transmitted. Thus the event ESIC conditioned
on ∩i,jEcij is equivalent to the event a random user is not recovered under the T -peeling process which
is denoted ET -peeling. The multiplicative factor V in the upper bound of Pe in Eqn. (9) union bounds the
total number of instances(slots) a preamble collision (E1) or a compressed sensing decoder error (E2) or
a MAC channel decoder error (E3) can occur.

A. Hash Collision
Lemma 1. Pr (E1) ≈ T (T−1)

2Mp

Proof. Let us consider the event Ec1j where the Rj users in slot j picked a unique preamble message index
(or equivalently a unique permutation). Note that in total there are Mp possible preamble indices for each
user.

Pr(Ec1j) =
Mp(Mp − 1) . . . (Mp − (Rj − 1))

M
Rj
p

=⇒ Pr(E1j) = 1−
Rj−1∏
i=0

(1− i

Mp

)

≈ Rj(Rj − 1)

2Mp

. (10)

According to the encoding scheme each user chooses the slot randomly according to the message index
and hence the degree distribution for the slots is non-uniform. But we observe that the CS and the channel
decoders are run on a slot only when the remaining number of connections are estimated to be less than
T and hence we can approximate the number of connections to T to get a uniform upper bound across
the slots. Substituting T for Rj in Eqn. (10) completes the proof.
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B. Compressed sensing problem and design choices
Now we discuss our choice of parameters for T,Bc, Bp and the sensing matrix A. First let us start

with the sensing matrix and the recovery of the sparse signal that aids in recovering the set of preamble
message indices. In this paper the typical values considered for T are {2, 4}. A low probability of error
for event E2, for such low values of T , translates to designing a sensing matrix A where we require:

1) A large minimum distance in the Euclidean space between distinct T -sums of columns and
2) a minimal number of T -sets of columns whose sum is identical.

Before we formalize the above mentioned notions, we would like to note that, for the choice of A, we
considered the superimposed codes proposed by authors Fan, Darnell and Honary for the multiaccess
binary adder channel [8]. In this work the authors consider binary codes and show that every constant
weight code with weight w and maximum correlation c corresponds to a subclass of disjunctive code of
order T < w

c
. In other words, for any T < w

c
sum of any T codewords from this code results in a distinct

output. Although the superimposed codes solve the second requirement we mentioned above they do not
consider the first requirement i.e., the larger minimum distance of the resulting signal space of T -sums
of codewords which is also critical to obtain a low probability of decoding error values. We defer the
discussion of these results and our result relaxing the constraint of constant weight to appendix.

In the following subsection we introduce lattice and derive upper bounds on Pr(E2) based on maximum-
likelihood decoder for lattices.

Definition 2. A lattice Λ in n-dimensional Euclidean space Λ ⊂ Rn can be defined as:

Λ = {λ ∈ Rn : λ = Gu,u ∈ Zm} (11)

where M ∈ Rn×m is called the generator matrix of the lattice. We define the minimum distance dmin(Λ)
of the lattice Λ as

dmin(Λ) , min
λ1,λ2∈Λ

||λ1 − λ2||2.

Let the set of codewords/columns of A be denoted by C and C ⊆ Clin where Clin is a binary linear code.
We can then observe that the set of T -sums of codewords is a subset of lattice formed from Clin ie..,

T∑
j=1

~aij ∈ Λ ij ∈ [1 : Mp]

where Λ = {Gu,u ∈ Zm},G is the generator matrix of the binary code Clin. Now that the connection
between the T -sums of the binary code and the lattice in which they are contained in is established we
formalize the two requirements on A mentioned above.

Definition 3. For a given binary code C and fixed T , for a set subset S of size T , we define the indicator
parameter

βT (S) , 1[∃S ′ s.t. u(S) = u(S ′), |S ′| = T, S ′ 6= S],

where u(S) :=
∑

i∈S ~ci and βT (S) indicates if the T sum of codewords for the index set S is unique in
the set of T -sums of codewords from C. The second requirement mentioned above translates to minimizing
βT (C). Similarly we define βT (C) ,

∑
S⊂[1:|C|] βT (S) counts the total number of subsets whose sum is not

unique in the set of T -sums of codewords from C.

Definition 4. For a given binary code C, fixed T , we define the minimum Euclidean distance of a set S
in the space of T -sums of codewords as

dmin(S; C) , min
S 6=S′,|S|=|S′|=T

||u(S)− u(S ′)||2 .
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Also the following relation combining the three quantities above can be observed:

dmin(S; C)

{
≥ dmin(Λ) if βT (S) = 0

= 0 otherwise.
(12)

We will upper bound the probability of decoding error for the CS problem in terms of the parameters
defined in Def. 3 and 4.

Lemma 5. Let C ⊆ Clin, where Clin is a linear code containing C, be a binary code with parameters
(n,M, dmin). The probability of error of the bounded distance decoder in decoding ~z =

∑
i∈S,|S|=T ~ci +~n

where ~n ∼ N (0, σ2I) can be upper bounded by

Pr(E2) ≤ βT (C)(|C|
T

) +

(
ed2

min(Λ)

4σ2N
e
−dmin(Λ)2

4σ2N

)N/2
where N is the blocklength of the code C.

Proof. We recall that the error event E2 is defined as the event in which the CS decoder fails to decode
the set S exactly from

~y =
∑
i∈S

~ai + ~z

where |S| = T . When we condition event E2 on the T -sum of vectors from S not being unique, which
happens with probability βT (C)

(|C|T )
the first part of the bound is obtained. If we assume that the T -sum of

vectors from S is unique, then the probability of error in decoding the set S under bounded distance
decoding can be upper bounded by Pr

[
||~z|| ≥ dmin(Λ)

2

]
which is equivalent to

Pr

[
N∑
i=1

z2
i ≥

d2
min(Λ)

4σ2

]
where zi ∼ N (0, 1). The result is obtained by using the right tail bounds of Chi-squared distribution.

We should note that it is not easy to compute the values of βT (C) especially for higher values of T
or Mp. Following the constant weight code argument in [8] we provide upper bounds, in terms of the
minimum and maximum Hamming weights of the binary code C, on the values of T for which βT (C) = 0.

Lemma 6. A binary code C with parameters (n,M, dmin, wmax) is also a disjunctive code of order (n,M, T )
for all T satisfying

T <
wmin

wmax − dmin/2
. (13)

where wmin and wmax respectively are the minimum and maximum Hamming weights of all codewords in
the code. Note that the values of dmin and wmin are not necessarily equal for non-linear codes.

The proof is provided in Appendix. We look at an example of sensing matrix A based on BCH code
to consider how the results so far impact the probability of decoding error.

Example 7. Consider a binary BCH code C with parameters (n, k, dmin) = (63, 10, 27). Let the subset
C0 ⊂ C be obtained via the following decomposition:

C = C0 ∪ C1 such that c ∈ C0 ⇐⇒ c̄ ∈ C1,

where c̄ = 1 ⊕ c is the one’s complement of c. For the code C0\0, 0 being the all-zero codeword, the
weight and distance parameters are computed to be (wmin, wmax, dmin) = (27, 36, 27) for which the bound
in Eqn. (13) is T ≤ 1. But numerically we observe that this code produces unique outputs from the
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MAC adder channel atleast upto values of T = 3. The parameters βT (C0) and dmin(C0, T ) are computed
numerically for T ≤ 1 and are given by :

T dmin βT (C)
1
√

27 0
2
√

27 0
3
√

27 0 .

C. Channel coding problem
In the following subsection we will look at the analysis of the T -GMAC channel coding problem and

the bounds on performance. Although the information theoretic limits for the multiple access problem
especially the symmetric rate region are well known these do not prove to be very useful for our purposes.
It is because even though the block lengths we are interested in are considerably large the information
length (or equivalently the code size for each user) is small. Therefore we will be considering the finite
length performance especially we will use the finite length random coding bounds for the Gaussian multiple
access channel derived by Polyanskiy [1]. The following lemma is identical to Thm. 1 in [1] except for
the difference that we are interested in the case where error is declared if atleast one of the users messages
is not in the decoded set (see event E3j) in contrast to [1] where the error probability is defined similar
to Eqn. (2).

Lemma 8. There exists an (N ′,M1) random-access code for T -user satisfying the power constraint P
(see Eqn. (4)) with the probability of error under maximum-likelihood decoder bounded by

P (E3) ≤ hFBL(N ′,Mc, T, P ) :=
T∑
t=1

min(pt, qt) + p0, (14)

where

p0 =

(
T
2

)
Mc

+ TPr

(
N ′∑
j=1

Z2
j >

N ′P

P ′

)
pt = e−N

′E(t)

E(t) = max
0≤ρ,ρ1≤1

−ρρ1tR1 − ρ1R2 + E0(ρ, ρ1)

E0 = ρ1a+
1

2
log(1− 2bρ1)

a =
ρ

2
log(1 + 2P ′tλ) +

1

2
log(1 + 2P ′tµ)

b = ρλ− µ

1 + 2P ′tµ
, µ =

ρλ

1 + 2P ′tλ

λ =
P ′t− 1 +

√
D

4(1 + ρ1ρ)P ′t

D = (P ′t− 1)2 + 4P ′t
1 + ρρ1

1 + ρ

R1 =
1

N ′
logMc −

1

N ′
log(t!)

R2 =
1

N ′
log

(
T

t

)
qt = inf

γ
Pr[It ≤ γ] + exp{N ′(R1 +R2)− γ}.
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and

It = min
|S0|=t,S0⊆[T ]

N ′Ct +
log e

2

( ||∑i∈S0
~ci + ~z||22

1 + P ′t
− ||~z||22

)
Ct =

1

2
log(1 + P ′t)

~z ∼ N (0, IN ′).

Proof. In [1], author Y. Polyanskiy considers the T -user GMAC problem with power constraint P
according to Eqn. (4). Let W be the set of messages of size T , chosen by the users uniformly without
replacement and Ŵ be the set of messages of size T output by the decoder. The author considers a random
Gaussian codebook generated from Gaussian process N (0, P ′In), (P ′ < P ), and maximum-likelihood
decoder and shows that

Pr(|W\Ŵ | = t) = min(pt, qt). (15)

It was also shown that p0 is the total variation distance of a random variable of maximum value 1 when
the measure under which a) the messages are sampled independently rather than without replacement
and b) the codeword is set to zero-vector if the total power of the random codeword is larger than nP
is replaced by the measure considered in showing Eqn. (15) i.e., messages sampled independently and
disregarding the strict power constraint on each codeword. These results along with the observation that

Pr(E3) = 1−
t∏
i=1

(
1− Pr(ŵi /∈ Ŵ )

)
+ p0

≤
T∑
t=1

Pr(|S\Ŝ| = t)

completes the proof.

D. Symmetric Interference Cancellation
In the channel coding literature for LDPC codes on binary erasure channel and sparse signals via Tanner

graphs literature the symmetric interference cancellation is traditionally studied under the name of peeling
decoder which is an iterative process in which if a right node (slot in our case) is connected to only
one left node (user) the corresponding left node and all its connections are peeled off from the bipartite
graph. This is essentially the symmetric interference cancellation process described in Sec. II except that
we peel off the connections from a right node if the number of variable nodes connected is less than or
equal to T instead of 1. Although density evolution methods are well studied to predict the performance
of such decoding processes all the existing density evolution methods are for values of T = 1. Before we
address this issue let us define the considered peeling process precisely.

Definition 9 (T -peeling). We define an ideal SIC decoder as the decoder in which at each slot, if the
number of users transmitted and are still undecoded is less than or equal to T , then the remaining
undecoded users in that slot are decoded with zero error. In other words in the ideal SIC process there
are no hash collisions in any slot and the channel and sparse signal decoders are assumed to be zero-error.
This process proceeds iteratively until all the users are decoded or there are no slots with undecoded
users less than or equal to T . We also refer to this as T -peeling process.

Lemma 10 (Density Evolution (DE)). Let the left and right degree distributions (d.d.) of the bipartite
graph from the edge perspective be λ(x) and ρ(x). Then let xt be the probability that an edge in the
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graph, in iteration t of the T -peeling process, is connected to a left node that is undecoded yet. Then the
recurrence relation for xt corresponding to the T -peeling process is given by

yt =

[
T∑
r=1

ρr +
∑
r>T

ρr

(
T−1∑
t=0

(
r − 1

t

)
(1− xt)r−1−txtt

)]
, (16)

xt+1 = λ(1− yt). (17)

Proof. In the context of low density parity check(LDPC) codes the bipartite graph corresponds to the
parity check matrix where the left and right nodes represent the bits of the codeword and the parity check
equations respectively. If we consider an LDPC code under binary erasure channel where each bit is
erased with probability ε, under the assumption that the bipartite graph is a tree, the probability that a
random edge in the graph is an erasure in iteration t of the peeling process is given by [9]

yt =
rmax∑
r=1

ρr(1− xt)r−1, (18)

xt+1 = ελ(1− yt). (19)

Eqn. (18) is due to the observation that all the incoming messages at a check node are independent, due to
the tree assumption, and the outgoing message on an edge from a check node of degree r is a non-erasure
if and only if all the incoming messages are non-erasures. For degree distributions with finite maximum
degree on the left and right it is shown that a graph chosen randomly from the ensemble (N, λ, ρ) is a
tree with probability approaching 1 asymptotically in blocklength of the code.

Now if we consider an edge e connected to check node of degree r in the T -peeling process, the
outgoing message is a non-erasure if and only if there are at most T − 1 erasures in the remaining
r − 1 incoming edges. Thus the probability that the outgoing message from a check node of degree r is
non-erasure, denoted by yt,r, if the incoming message on the remaining r − 1 edges is an erasure with
probability xt is equal to

yt,r =
T−1∑
t=0

(
r − 1

t

)
(1− xt)r−1−txtt if r > T

= 1 else if r ≤ T.

Averaging over all edges where an edge is connected to a check node of degree r with probability ρr
gives us Eqn. (16).

Let L(x) =
∑lmax

i=1 Lix
i be the left d.d according to which the the users choose their repetition parameters

as described in Sec. III-A i.e., Pr(Lw = i) = Li. Also let the average left degree of this distribution be
lavg =

∑
i iLi. Then according to our transmission policy the right d.d. R(x) is Binomial distributed with

parameters (Kalavg, 1/V ) and in the limit Ka → ∞ R(x) can be approximated as Poisson distribution
with parameter ravg =

Kalavg

V
. Thus, asymptotically in Ka, it can be seen that R(x) = e−ravg(1−x) and

ρ(x) = R′(x)/R′(1) = e−ravg(1−x). For more details refer to [10].

Lemma 11. For V = αKa where α is fixed the asymptotic performance of our transmission scheme under
the ideal SIC decoding process can be characterized by

lim
Ka→∞

Pr(ESIC(Ka, T )) = L(1− y∞)

where y∞ = lim
t→∞

yt,
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Fig. 5: α∗DE is the density evolution threshold computed for L(x) = x2 and T = {2, 4} from Lemmma. (10).
We validate the threshold behavior by evaluating the T -peeling performance via Monte Carlo simulations
for increasing blocklengths. We observe that the simulations indeed confirm the threshold behavior for
values of α above the DE threshold.

and Pr(ESIC(Ka, T )) is the probability that the ideal SIC process does not recover a user given there are
Ka users. Here the initial condition is x0 = 1 and the evolution of xt, yt is given by the DE relationship
in Lem. 10.

As we can see from Eqns. (17) and (16) that xt = 0 is a fixed point if and only if λ0 = 0. This leads
us to the following result characterizing he threshold behavior of the system.

Definition 12 (Density Evolution Threshold). If L1 = 0 we define the density evolution threshold α∗DE to
be

α∗DE , inf{α : lim
Ka→∞

Pr(ESIC(Ka, T )) = 0}.

We validate the threshold behavior via simulations. For a fixed left d.d L(x) = x2 we first compute the
density evolution thresholds according to Def. 12 to be 0.5975 and 0.2949 for T = 2, 4 respectively. We
then perform Monte Carlo simulations where each time a random graph is chosen as described in Sec.
III-A for increasing values of Ka and plot the performance as we incrase the number of slots. The results
are presented in Fig. 5. In both the cases the threshold behavior can be clearly seen that as Ka increases
the probability of a user not being decoded decreases sharply for values of α > α∗DE and remains fairly
constant for values of α ≤ α∗DE.

V. NUMERICAL RESULTS

In this section we evaluate the overall performance of the proposed scheme and compare with the
other schemes known in the literature. In [2] apart from proposing a low complexity coding scheme
for the uncoordinated Gaussian multiple access the authors Ordentlich and Polyanskiy also compare the
performance of their proposed scheme with ALOHA, treating inference as noise (TIN), and the random
coding achievability bounds. To make the comparison fair and convenient we pick the same parameters.
We fix the number of bits each user intend to transmit B = 100, total number of channel uses n = 30, 000,
total number of active users Ka ∈ [25 : 300] and the maximum per user error probability Pe ≤ ε = 0.05.

Remark 13. Note that in Lemma. 1 the probability of preamble message collision scales only as Pr(E1) ∝
1/Mp and if the desired error probability is less than 0.05 which requires V Pr(E1)� 0.05 which in turn



15

requires Mp to be a large value. Therefore we try to circumvent this issue by not counting a preamble
collision in a slot as an error instead we modify the scheme where sparse signal decoder outputs a
collision if the output set of messages of size T do not sufficiently explain the received vector i.e., if

||~y −
∑
i∈N̂

~ai||22 > J/2

then we do not decode this slot in this iteration. In our numerical simulations we update the definitions of
ET -peeling and E2 accordingly where ET -peeling corresponds to the peeling process where a slot is not peeled
off if it has atleast two users connected with identical preamble messages and E2 corresponds to the CS
decoder error event where two or more users may have colliding preambles. With that the upper bound
for error probability is modified to

Pe ≤ Pr(ET -peeling) + V (Pr(E2) + Pr(E3)) . (20)

With the parameters B, n,Ka, Pe fixed our proposed scheme has the following design parameters:
1) The maximum number of users to be jointly decoded at a slot T ∈ {2, 4}.
2) From Eqn. 20 we want Pr(ET -peeling) +V (Pr(E2) + Pr(E3)) ≤ 0.05. Therefore we set the target error

probabilities for the individual events as Pr(ET -peeling) ≤ ε0 = 0.04 and Pr(Ei) ≤ 0.01/2/V , i = 1, 2.
3) The left d.d is chosen to be L(x) = λx+ (1− λ)x2. Although in Sec. IV-Dwe remarked that if the

minimum left degree is one then zero is not a fixed point for the DE equations or in other words,
in the asymptotic regime, we will have error floors rather than threshold behavior. But the effects
of a minimum left degree of one in the finite number of users regime are not very clear. The free
parameter is chosen from the set λ ∈ {0, 0.1, . . . , 0.9, 1}.

4) We choose Bp = 9 and Bc = B − Bp = 91. Note that Mp = 2Bp = 512 is the size of the sensing
matrix.

5) Let C0 be the binary code of size 29 described in Ex. 7. We choose the sensing matrix of size
J ×Mp = 63× 512 as

A = [~a1,~a2, . . . ,~aMp ], (21)

where ~ai =
√
P2(1− 2~ci),~ci ∈ C1, i.e., aij ∈ {−

√
P2,
√
P2}.

For a fixed T the performance of the overall scheme i.e., the minimum Eb/N0 required for achieving
Pe ≤ ε is computed as following:

Eb
N0

= min
λ

(2− λ)(JP2 +N ′P1)

2B
(22)

where

P2 := arg min
P2

Pr(E3) ≤ ε− ε0

2V
(23)

P1 := arg min
P1

hFBL(N ′, Bc, T, P1)) ≤ ε− ε0

2V
(see Eqn. (14)) (24)

N ′ := Ñ − J

Ñ :=
⌊ n
V

⌋
V := arg min

V
Pr(ET -peeling(Ka, V, T )) ≤ ε0. (25)

A remark on how we compute Pr(E3) is in order. With the sensing matrix fixed, as described in Eqn.
(21), the bound given in Lem. 5 is firstly difficult to compute especially the parameters K(Λ), βT (Λ)
and secondly it is not very tight in the non-asymptotic regime when compared with the results obtained
through numerical simulations. Specifically, for simulations, we choose T random preamble message
indices independently from the available Mp indices and form the measurement vector. Then we use
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a two-stage decoder as already described in Sec. III-C1 where for the first stage we employ a non-
negative least squares algorithm and compute the probability of error Pr(E3) in Eqn. (23) from atleast 105

simulations. Similarly for Pr(ET -peeling) in Eqn. (25) we rely on numerical simulations where we implement
the T -peeling process described earlier in Def. 9. The results are presented in Fig. 6.

In Fig. 6 the curves labelled T = 2, T = 4 correspond to the performance of our proposed scheme
assuming the existence of a coding scheme for the T -user multiple access channel that achieves the finite
block length(FBL) bounds in [1]. The curve labelled 4-fold ALOHA is the performance of the 4-fold
ALOHA scheme from [2] which also assumes exactly the same code. It can be seen that for large values
of Ka, our proposed scheme with T = 4 substantially outperforms the 4-fold ALOHA and this gain is due
to the SIC. The curve labelled OP-Exact is a reproduction of the results from [2] of the practical scheme
introduced there. The x mark represents our proposed scheme where for the channel coding part instead
of the FBL bounds we use the actual simulation results. We use a rate-1/4 (364, 91) LDPC code obtained
from repeating every coded bit of (3,6) LDPC code twice and a message passing decoder for T = 2. It
can be seen that the simulation results with the (3, 6) LDPC code are only 0.5 dB away from the curve
corresponding to T = 2 showing that the pragmatic coding scheme can perform close to the finite length
bounds. It can also be seen that our proposed scheme provides substantial gain over the results in [2].
The performance of OP-Exact is already substantially better than many other multiple access schemes
and our proposed scheme can potentially provide more than 14 dB improvement over OP-Exact for large
values of Ka and is only about 7 dB away from Polyanskiy’s FBL bound [1]. The slope of the T = 4
curve also is much closer to the finite block length bound which is encouraging for larger values of Ka.

In the proposed encoding scheme, for L(x) = λx + (1 − λ)x2 each user may transmit once or twice
depending on the message index chosen. We need to point out that the power constraint employed is an
average over all the message indices i.e

Ew
[
||~̃cw||22

]
= (2− λ)P.
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APPENDIX

In the following subsection we first present the main results from [8] that enabled the authors to show
that constant weight codes are a subclass of disjunctive code. Then we follow it up with our result where
we relax the constant weight constraint on the code to nearly constant weight.

Definition 14. The maximum correlation c of a binary code C is defined as

c = max
~ci,~cj∈C, i 6=j

< ~ci,~cj > .
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Fig. 6: Minimum Eb/N0 required as a function of number of users. For the cases T = 2, 4 and the 4-fold
ALOHA, the parameters chosen are ε0 = 0.04 and ε = 0.05. This results in a total Pre ≤ 0.05(= ε).

Definition 15. A binary vector ~c = [c(1), c(2), . . . , c(n)] is said to be included in a vector ~z = [z(1), z(2), . . . , z(n)]
if and only if z(i) ≥ c(i) ∀i.

Definition 16. A binary code C with length n, size M is said to be a disjunctive code of order T if each
subset S ⊂ C with size |S| ≤ T has the property that the vector ~z includes only those codewords in C
that belong to S where

~z =
∑
~ci∈S

~ci (26)

is the output of the multiple access real adder channel. We denote a disjunctive code by D(n,M, T ).

Definition 17. A constant weight(CW) binary code is one in which all the codewords have equal weight
w. For a CW code, the minimum distance dmin and the maximum correlation c are related as

2c = 2w − dmin.

We denote a constant code by parameters CW(n,M,w, c) where n,M are blocklength and size of the
code respectively.

Lemma 18 ([8] Theorem 1). A constant weight binary code C with parameters (n,M,w, c) is also a
disjunctive code of order (n,M, T ) for all T satisfying

T <
w

c
.

Example 19. Consider a Reed-Solomon code RS(n, k, dmin) = RS(7, 3, 5). As described in [8] we
construct a constant weight code by mapping each symbol in a codeword from GF(23) to a length 8
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binary vector of weight one

0→ 10000000

1→ 01000000

· · ·
7→ 00000001.

Note that this code has parameters n = 56,M = 29, w = 7, dmin = 10 which implies c = w−dmin/2 = 2.
Thus any T -sum of the codewords from this CW code is unique for all T ≤ 3 < w

c
.

Now we relax the constant weight constraint in Lemma. 18 and give the corresponding bounds on the
disjunctive code parameters.

Lemma 20. For a binary code C with parameters (n,M, dmin, wmax), where wmax is the maximum Hamming
weight of all the codewords in the code, the maximum correlation between any two codewords can be
given by

c ≤ wmax − dmin/2.

Proof. For any two codewords ~ci,~cj ∈ C the relationship between correlation, Hamming distance and sum
of Hamming weights can be given by

dH(~ci,~cj) + 2c(~ci,~cj) = wH(~ci) + wH(~cj)

where dH and wH are the Hamming distance and weights respectively. By substituting the lower and upper
bounds dmin and wmax for the two parameters gives us the required upper bound on maximum correlation
of any two codewords of the binary code.

Proof of Lem. 6. Without loss of generality consider a set S = {~c1,~c2, . . . ,~cT} of codewords of size T and
let the output of the real adder multiple access channel, given by Eqn. (26), be ~z. Let us consider codeword
~ce ∈ C\S and look at the event in which ~z does not include ~ce. Let sie := {k : ci(k) = ce(k) = 1} ∀i ≤ T
and se = {k : ce(k) = 1}. Since ~z =

∑
i≤T ~ci =⇒ z(k) ≥ 1 ∀k ∈ ∪sie. Hence the condition that needs

to be satisfied for ~z to not include ~ce is that ∃k : k ∈ se\ ∪ sie which translates to

| ∪ sie| < |se|. (27)

The inequality in Eq. (27) is satisfied when
∑

i c(~ci,~ce) < wH(ce) which is implied by the condition
Tcmax < wmin and from Lemma. 20 the required result follows.


